下载此文档

自动控制第九章传递函数的状态空间实现.doc


文档分类:高等教育 | 页数:约14页 举报非法文档有奖
1/14
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/14 下载此文档
文档列表 文档介绍
第九章传递函数的状态空间实现§、实现问题的提法我们知道,对于一个线性定常系统,可以用传递函数矩阵进行输入输出描述()如果系统还是集中的,则还可以用状态空间方程来描述()如果已知状态空间方程(),则相应的传递矩阵可由()求出,且求出的矩阵是唯一的。现在,我们来研究它的反问题,即由给定的传递矩阵来求状态空间方程,这就是所谓的实现问题。事实上,对于时变系统也有实现问题,只是它的输入输出描述不再是传递矩阵。:实现传递矩阵称为是能实现的是指存在一个有限的维状态方程()或简记为{A,B,C,D},使得且{A,B,C,D}称作的实现。注意:一个线性定常系统的分布系统可以用传递矩阵来描述,但不能描述为有限维的状态方程。所以说并非所有的都是能实现的。二、实现的不唯一性仔细回忆一下我们在状态变换和规范分解时得到的结论可知:尽管对于给定系统{A,B,C,D},它的传递函数矩阵是唯一的;但反过来,对于给定系统的传递函数矩阵,求它的状态空间实现{A,B,C,D},结论便不唯一。因为我们知道,状态变换前后,系统的状态空间方程可能大相径庭,但其传递函数矩阵却是相同的;同样,不能控或不能观系统,经规范分解后的整个系统与其中的既能控又能观的子系统均是其传递函数的一个实现。所以,如果是能实现的则其有无穷多各个实现,且不一定具有相同的维数。三、最小实现尽管每一个传递函数阵,可以有无限多个实现。我们感兴趣的是这些实现中维数最小的实现,即所谓最小实现,也叫不可约实现、最小维实现、最小阶实现。因为在实用中,最小实现阶数最低,在进行运放模拟和系统仿真时,所用到的元件和积分器最少,从经济性和可靠性等角度来看也是必要的。最后,我们还不证明地给出一个关于最小实现的定理::实现状态空间方程{A,B,C,D}是传递函数矩阵的最小实现的充要条件是{A,B,C,D}既能控又能观。传递函数矩阵的所有最小实现,互相间是代数等价的。§。设传递函数为()作一简单的代数变换,便可得: ()设系统{A,b,c,d}是的一个实现,则有()上式应对任意的s都成立,令则可得到这就是说:对一般正则有理分式的传递函数,其实现的d阵(标量)是唯一的,且()于是,本节的以下内容仅讨论传递函数为严格正则有理分式的情况。§、基本形式回忆第七章第二节,在那里,我们以一个四阶传递函数为例,给出了由传递函数出发建立系统的状态空间方程的一般方法。不难证明:状态空间方程()是传递函数()的一个实现。不难发现该实现的系统矩阵与控制矩阵的二元组合在一起正好构成能控标准型,故称上述实现是能控标准型实现。例7-5设线性定常单输入-单输出系统的传递函数为试求该系统的状态空间方程。解:引入一个新变量,它的拉氏变换式定义为即()于是,我们有()定义状态变量为 即 ()显然()它们与()无关,而直接由()中定义得到。为导出关于的等式,我们把()代入至(),即可得在时域中,此即()而将()代入至()又可得到在时域中,此即()把()、()、()结合在一起即()这就是所要求的状态空间方程。二、能控标准型实现的变型要指出的是:在上例中,若状态变量为 即 ()则可导出系统的状态空间方程是()注:我们称系统()为的下友型能控标准型实现,而称()为的上友型能控标准型实现。§:一、基本形式为了明确起见,我们记传递函数的能控标准型实现是,即有由于是标量,故应有这就是说系统也是的一个实现。由此我们又得到一种极重要的传递函数的实现形式。()根据对偶性原理:与是一对对偶系统。既然构成能控标准型,那么由能观标准型的定义,构成能观标准型,故称为的能观标准型实现。二、能观标准型实现的变型留作****题。§(我们仍假定为严格正则有理分式)的分母进行分解因式,亦即求出系统的各个极点,然后我们分两种情况讨论该传递函数的约当标准型实现:一、无重极点系统的对角型实现设给定的传递函数为()用部分分式分解的方法可将上式写为即()将之用结构图表示出来就是(以四阶为例):按图示方法选取状态变量则: ()在时域里,即()同时从图上还可以看出: ()故该系统的约当标准型实现为()另一方面,式()也可以用如下的结构图来表示按图示方法选取状态变量则: ()在时域里,即(

自动控制第九章传递函数的状态空间实现 来自淘豆网www.taodocs.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数14
  • 收藏数0 收藏
  • 顶次数0
  • 上传人wyj15108451
  • 文件大小1007 KB
  • 时间2019-02-24