关键词:纯方位跟踪;混合坐标系;距离参数化;平方根容积卡尔曼滤波;鲁棒性 中图分类号: 文献标志码:A Abstract:In order to solve the problems of having nonlinear observation equations and being susceptible to initial value of filtering in bearingsonly target tracking, a rangeparameterized hybrid coordinates Square Root Cubature Kalman Filter (SRCKF) algorithm was proposed. Firstly,it applied the SRCKF to hybrid coordinates,obtained better tracking effect than the SRCKF under Cartesian coordinates. And then it combined the range parameterization strategy with the SRCKF under hybrid coordinates, and eliminated the impact of unobservable range. The simulation results show that the proposed algorithm can significantly improve the accuracy and robustness although the computational complexity increases slightly. Key words: bearingsonly tracking;hybrid coordinates;range parameterization;Square Root Cubature Kalman Filter (SRCKF);robustness 0 引言 纯方位目标跟踪利用运动目标本身的有源辐射,获取目标的角度信息序列实时估计目标的运动状态[1]。由于纯方位目标跟踪仅需要目标的角度信息,具有隐蔽性强、设备简单、探测距离远等优点,在电子侦察、精确制导、智能导航和电子对抗等领域具有广泛应用[2-3]。由于传感器的观测量仅有目标的角度信息,无法获取目标的径向距离信息,观测量是状态量的非线性函数,因此纯方位目标跟踪实质上是一个非线性滤波问题。目前纯方位目标跟踪的研究热点主要集中在:滤波算法的研究和坐标系的选择。
当选取滤波初始状态为[10000,10000,-5000,10,10,0]T,经过100次蒙特卡洛仿真,得到位置估计相对误差曲线如图5所示,可以看出当选取的滤波初始距离与真实距离相差较大时,由于RPHCSRCKF算法不受初始距离选取的影响,RPHCSRCKF算法的滤波精度和收敛速度均要明显优于HCSRCKF算法和SRCKF算法。 5 结语 针对纯方位目标跟踪问题,本文提出了一种距离参数化混合坐标系下的平方根容积卡尔曼滤波算法,将距离参数化思想与混合坐标系下的平方根容积卡尔曼滤波相结合,有效避免了滤波初始值对纯方位目标跟踪性能的影响,且混合坐标系下的平方根容积卡尔曼滤波算法结合了直角坐标系和修正球坐标系二者的优点,比直角坐标系下的平方根容积卡尔曼滤波算法具有更好的滤波效果。仿真结果表明,本文提出的RPHCSCKF算法虽然计算量有所增加,但抗噪声能力明显增强,在不理想的初始状态下仍可以实现有效跟踪,其鲁棒性和滤波精度较其余滤波算法均有较大幅度的提高。 参考文献: [1] SONG T L. Observability of target tracking with bearingonly measurements[J]. IEEE Transactions on Aerospace and Electronic Systems,1996, 32(4): 1468-1471. [2] WANG J, BAO F, ZHANG detection and tracking radar systems technology and development[J].Radar Science and Technology, 2025, 2(3):129-135.(王俊,保锋,[J].雷达科学与技术,2025, 2(3):129-135.)
[3] HATEM H, KUTLUYIL localization of scanning emitters [J].IEEE Transactions on Aerospace and Electronic Systems, 2025, 46(2): 944-951. [4] AIDALA V filter behavior in bearingonly tracking application[J]. IEEE Transactions on Aerospace and Electronic Systems,1979,15(1):29-39. [5] JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2025,92(3):401-422. [6] IENKARAN A, SIMON H. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2025, 54(6):1254-1279. [7] HAO Y, YANG J, CHEN L, et al. Square root cubature Kalman filter[J]. Journal of Projectiles Rockets Missiles and Guidance, 2025,32(2):169-172. (郝燕玲,杨峻巍, 陈亮, 等. 平方根容积卡尔曼滤波器[J].弹箭与制导学报,2025,32(2):169-172.) [8] LI W, YANG Y, HOU J. Bearingsonly tracking algorithm performance analysis based on infrared sensor [J]. Journal of Northwestern Polytechnical University, 2025,32(3):383-393. (李伟, 羊彦,侯静. 基于红外传感器方位跟踪算法的性能分析[J].西北工业大学学报, 2025,32(3):383-393.) [9] DING G, FENG X. Infrared target tracking based on modified spherical coordinates[J]. Modern Defense Technology, 2025, 35(5):101-104. (丁光庆,[J].现代防御技术, 2025, 35(5):101-104.) [10] PEACH tracking using a set of range parameterized extended Kalman filters[J].IEEE Proceedings of the Control Theory Application,1995,142(1):73-80.
[11] KARLSSON R, GAUSTAFSSON Bayesian estimation:bearingonly applications[J].IEEE Proceedings of Radar, Sonar and Navigation,2025,152(5):305-313. [12] KOZICK R J, SADLER B M. Source localization with distributed sensor arrays and practical spatial coherence[J]. IEEE Transactions on Signal Processing,2025,52(3):601-616.