下载此文档

微电子元器件的可靠性研究.doc


文档分类:通信/电子 | 页数:约13页 举报非法文档有奖
1/13
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/13 下载此文档
文档列表 文档介绍
微电子元器件的可靠性研究.doc微电子元器件的可靠性研究
随着科技的不断发展,信息处理效率的提高,微电子器件的尺寸越来越小,:栅氧化层、热载流子、金属化、,主要介绍了影响微电子器件可靠性的四个主要因素及其产生原理,并提出了提高微电子器件可靠性的解决方案及措施.
目前,飞速发展的微电子技术和不断缩小的器件尺寸,(Electro Static Discharge,ESD)为例,在静电放电失效的基本机理研究方面,中美两国研究人员对过电压场致失效和过电流热致失效的定义、,具体到某一类型的微电子器件的ESD失效模式和基本机理,美国研究得更加充分且全面,并建立了 ESD [主要是人体模型(HBM)和带电器件模型(CDM)] ,除了传统的互补金属氧化物半导体(CMOS)器件,美国还系统地研究了磁性读写头、各种微电子芯片等器件[1].
目前,我国在微电子器件可靠性的研究方面加大了资金和技术投入, ESD失效分析和对先进的失效分析技术手段、方法的研究和运用等方面仍然是我国科研工今后需要努力的方向.
1影响微电子器件可靠性的主要因素
影响微电子器件[如互补金属氧化物半导体(CMOS)、金属氧化物半导体场效应管(MOSFET)、垂直双扩散金属-氧化物半导体场效应晶体管(VDMOS)等]长期工作可靠性最主要的失效机理包括:热载流子效应、栅氧化层及栅氧击穿(即电介质经时击穿,TDDB)、金属化及电迁移、静电放电(ESD).下面对这四种失效机理及可靠性模型等方面进行详细介绍.

,随着栅氧化层厚度、结深和沟道长度的减小,导致漏端电场增强,、跨导下降,,器件性能的退化将会导致整个电路失效.

,器件氧化层中电荷的分布被改变,,可推算出常规条件下器件的寿命,由此可衡量热载流子特性的优劣[2].
其次, nm、30 V电压条件下,,在恒定电压下,栅电流随着时间的增加而减小.
[3]
(1) 雪崩倍增效应
在小尺寸MOSFET中,随着源—漏电压的升高以及沟道长度的缩短,,通过夹断区的载流子将从强电场获得很大的漂移速度和动能,就很容易成为热载流子,同时这些热载流子与价电子碰撞时还可产生雪崩倍增效应.
(2) 阈值电压漂移
若夹断区的一些热载流子与声子发生碰撞,得到了指向栅氧化层的动量,那么这些热载流子就有可能注入栅氧化层中;进入栅氧化层中的一部分热载流子还有可能被陷于氧化层中的缺陷处,变成固定的栅氧化层电荷,从而引起阈值电压漂移和整个电路性能的变化.
(3) MOSFET性能的退化
沟道内的一小部分有足够高能量的热载流子可以越过Si-SiO2界面的势垒( eV, eV),,但热电子注入栅SiO2层中将会引起界面陷阱积蓄电荷,并且,电荷的积累经过一段时间之后会使器件性能退化,导致阈值电压漂移、跨导降低和亚阈值斜率增大,甚至栅氧化层击穿.
(4) 寄生晶体管效应
当有较大的衬底电流Isub流过衬底(衬底电阻为Rsub)时将产生电压降(Isub·Rsub),使得源—衬底的N+-P结正偏,从而形成一个“源—衬底—漏”的寄生N+-P-N+—漏击穿,还会导致CMOS电路中的闩锁效应,使伏安特性曲线出现回滞现象.

电迁移是指在很大电流的作用下,,并逐渐导致在阴极形成空洞,

微电子元器件的可靠性研究 来自淘豆网www.taodocs.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数13
  • 收藏数0 收藏
  • 顶次数0
  • 上传人小博士
  • 文件大小68 KB
  • 时间2018-07-30