淘豆网
下载此文档放大查看缩小查看   1/64
0/100
您的浏览器不支持进度条
更多>>该用户其他文档
下载所得到的文件列表
有限元方法理论及应用.doc
文档介绍:
课程名称: 有限元方法理论及应用
考试形式:□专题研究报告□论文□大作业□√综合考试
学生姓名: 学号:
学生联系方式: 导师:
序号
分项类别
分值
1
理论知识探讨运用写作
2
理论分析与计算
3
上机实验报告
4
总分

1 等参单元及其应用 3
1.1 概述等参单元的原理及其对有限元法工程应用的意义。 3
1.2 等参单元的数值积分方法 4
1.3 线性等参单元和非协调元 10
1.4 等参单元的应用 13
2 分析与计算 15
2.1 计算题一 15
2.2 计算题二 16
2.3 计算题三 18
2.4 计算题四 22
3 上机实验 28
3.1 第一题 28
3.1.1 实验题目 28
3.1.2 实验目的 29
3.1.3 建模概述 29
3.1.4 计算结果分析与结论 30
3.1.5 实验体会与总结 50
3.2实验二 50
3.2.1实验题目 50
3.2.2实验目的 51
3.2.3 建模概述 51
3.2.4 计算结果分析与结论 53
3.2.5 实验体会与总结 55
3.3实验三 55
3.3.1实验题目 55
3.3.2实验目的 55
3.3.3建模概述 55
3.3.4计算结果分析与结论 56
3.3.5实验体会与总结 59
1 等参单元及其应用
1.1 概述等参单元的原理及其对有限元法工程应用的意义。
平面三角形单元、平面四面体单元、三维六面体单元这些单元受到两个方面的约束:其一是单元精度的约束,节点数越多,精度越高。其二是工程中的问题往往是复杂的几何体,规则的六面体和四面体不能准确地描述,且上述单元都是直线边界,处理曲边界几何误差大。为了解决上述矛盾,可以使其成为任意四边形和任意六面体单元,显然,由于它已经不再是规则的四边形和六面体,所以它们的单元位移模式和形函数也不同于规则的四边形和六面体的形函数。为此必须引入所谓的等参变换。采用相同的插值函数对单元的节点坐标和节点位移在单元上进行插值,这种单元称为等参单元。等参单元的原理是通过等参变换,建立起局部(自然)坐标中几何形状规则的单元与总体(笛卡尔)坐标中几何形状扭曲的单元的一一对应的映射关系,以满足对一般形状求解域进行离散化的需要。
为了得到上述映射的数学表达,引入对母单元节点上x,y,z坐标进行插值的思想,将母单元上每一点对应的x,y,z坐标看成是对节点坐标的插值,插值函数与位移插值中的形函数相同:
这样就得到了一个事实上的映射,n是节点总数,节点数越多,单元精度越高,是形状函数。通过上式建立起两个坐标系之间的变换,从而将自然坐标内的形状规则的单元变成为总体笛卡尔坐标内的形状扭曲的单元,通常称前者为母单元,后者为子单元。由于该几何变换式中采用了与位移模式相同的插值函数,因此称为等参变换。
工程中一些结构的形状有的是比较复杂的、不规则的,有的具有曲边边界,如果用一般单元分析些类结构,需要划分大量的网格,取更多的节点,这样一来计算增大很多,而且处理曲边边界几何体误差也较大。对此,可以用等参单元来解决。
等参单元具有曲面形状,可以用较少的单元拼成复杂不规则的实际结构,大大减少计算量,同时也提高了计算精度。等参单元的优点如下:1、等参单元形状、方位任意,容易构造高阶单元,适应性好,精度高。2、等参单元列式具有统一的形式,规律性强,采用数值积分计算,程序处理方便。
1.2 等参单元的数值积分方法
等参单元刚度矩阵的数值积分方法及确定积分阶的原理。全积分、减缩积分单元讨论和评价。
对等参单元数值积分原理的讨论:
在等参单元推求载荷向量或刚度矩阵是,需要进行如下形式的积分:
其中被积分函数一般比较复杂,有的可以积分出结果,但式子很繁;有的甚至的不到它的显式。因此,一般都用数值积分代替函数积分,即,在单元内选出某些点,称为积分点,算出被积函数在这些积分点处的函数值,然后用对应的加权系数,乘以这些函数值,在求出总和,将其作为近似的积分值。
1.2.1 一维数值积分
设有积分式。现讨论它的积分。首先构造一个多项式上有,然后用近似函数的积分来近似原被积函数的积分,称为积分点或取样点。积分点的数目和位置决定了近似的程度,因而也就决定了数值积分的精度。
(1)Newton-Cotes积分
此种积分包括积分域端点在内的积分点按等间距分布。对于个积分点(或取样点),根据积分点上的被积函数值可以构造一个近似多项式,使在积分点上有:
(1)
这个近似多项式可以通过Lagrange多项式来表示。
(2)
其中是阶Lagrange插值函数,即有
(3)
由于Lagrange插值函数有以下性质:
(4)
所以有(3)的插值函数是 内容来自淘豆网www.taodocs.com转载请标明出处.
更多>>相关文档
文档信息
最近更新
文档标签