下载此文档

天津大学最优化历年试题.doc


文档分类:研究生考试 | 页数:约6页 举报非法文档有奖
1/6
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/6 下载此文档
文档列表 文档介绍
天津大学最优化历年试题,天津大学最优化方法,最优化方法天津大学答案,最优化方法天津大学出版社,最优化方法解可新答案,天津大学出版社最优化方法课后答案,最优化方法天津大学课后答案,天津大学,天津大学办公网,天津大学研究生院1. 直解法
例 1. 用列主元素消去解下列线性方程组(结果保留5位小数)

例2. 设线性方程组,其中
求,并分析线性方程组是否病态?

例1. 设线性方程组为
,
写出求解线性方程组的Jacobi迭代格式,并确定当取何值时Jacobi迭代格式收敛.
例2. 写出求解线性方程组的Seidel迭代格式,并判断所写格式的收敛性,其中为


例 1. 已知
(1)试用二次插值多项式计算的近似值(数据保留至小数点后第5位)
(2)估计所得结果的截断误差(数据保留至小数点后第5位)
例 2. 由下列插值条件
1
2
4
6
7
4
1
0
1
1
求4次Newton插值多项式, 并写出插值余项.
4. Runge—Kutta格式
例写出标准方法解初值问题
的计算格式
5. 代数精度
例 1. 数值求积公式形如

试确定其中参数使其代数精度尽量高, 并确定代数精度.
例 2. 验证数值求积公式

是Gauss型求积公式.

例对积分,用Romberg方法计算积分的近似值,误差不超过并将结果填入下表(结果保留至小数点后第五位).




0


1



2


3

4

(1)设为上关于权函数的次正交多项式,以的零点为节点建立插值基函数,
证明:
证明: 设n次正交多项式的零点为,则以这n个零点为节点建立的插值基函数是n-1次多项式,是2n-2次多项式. 故当取和时Gauss型求积公式

等号成立, 即

则有
(2)对线性方程组,若是阶非奇异阵,,是的精确解,是的近似解。记
证明:
证明:由于是的精确解,则,
又是阶非奇异阵,则
,且,则

(3)初值问题有解,若,是用Euler格式解得的在处的近似值,证明: .
证明:记,且, Euler格式为
则有


.
(4)设为非奇异阵,试证:线性方程组的数值解可用Seidel迭代方法求得.
证明:因为为非奇异矩阵,故与是同解方程组,而正定,则
Seidel格式收敛,即用Seidel方法一定能求得的解.
(5)试导出求解初值问题
的梯形格式,并证明用梯形格式解初值问题所得数值解为
证明将在上积分, 得

将右端的积分用梯形公式计算其近似值, 并用分别代替,

将代入梯形公式
得, 则有

因为, 得.
(6)设,证明
证明:的二次Lagrange插值多项式及余项形式为

其二阶导数为
注意到,有



(7)证明求积公式

是稳定的.
(8)设初值问题中的区域D上关于满足Lipschitz条件,
证明:格式是收敛的.
倒数第三题,求A0、A1、A2参数的那道题,前面积分限是0到1,而后面求积公式的第一个求积节点居然小于0

天津大学最优化历年试题 来自淘豆网www.taodocs.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数6
  • 收藏数0 收藏
  • 顶次数0
  • 上传人cjrl214
  • 文件大小318 KB
  • 时间2018-11-09