淘豆网
下载此文档放大查看缩小查看   1/6
下载文档 文档分类:中学教育 > 中学课件

学案24.3正多边形和圆.doc


下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表
0/100
您的浏览器不支持进度条
更多>>该用户其他文档
下载所得到的文件列表
学案24.3正多边形和圆.doc
文档介绍:
教学目标:1、了解正多边形的概念、正多边形和圆的关系;2、会通过等分圆心角的方法等分圆周,画出所需的正多边形;3、能够用直尺和圆规作图,作出一些特殊的正多边形;4、理解正多边形的中心、半径、边心距、中心角等概念。重点:正多边形的概念及正多边形与圆的关系。难点:利用直尺与圆规作特殊的正多边形。过程:一、情境创设:观察下列图形,你能说出这些图形的特征吗?提问:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?二、探索活动:活动一观察生活中的一些图形,归纳它们的共同特征,引入正多边形的概念概念:叫做正多边形。(注:各边相等与各角相等必须同时成立)提问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.活动二用量角器作正多边形,探索正多边形与圆的内在联系1、用量角器将一个圆n(n≥3)等分,依次连接各等分点所得的n边形是这个圆的内接正n边形;圆的内接正n边形将圆n等分;2、正多边形的外接圆的圆心叫正多边形的中心。活动三探索正多边形的对称性问题:正三角形、正方形、正五边形、正六边形、正八边形中,哪些是轴对称图形?哪些是中心对称图形?哪些既是轴对称图形,又是中心对称图形?如果是轴对称图形,画出它的对称轴;如果是中心对称图形,找出它的对称中心。问题:正多边形与圆有什么关系呢?什么是正多边形的中心?发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.圆心就是正多边形的中心。分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?你知道为什么吗?思考:任何一个正多边形既是轴对称图形,又是中心对称图形吗?跟边数有何关系?结论:正多边形都是轴对称图形,一个正n边形有条对称轴,每条对称轴都通过正n边形的;一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形。活动四利用直尺与圆规作特殊的正多边形问题:用直尺和圆规作出正方形,正六多边形。思考:如何作正八边形正三角形、正十二边形?拓展1:已知:如图,五边形ABCDE内接于⊙O,AB=BC=CD=DE=EA.求证:五边形ABCDE是正五边形.拓展2:各内角都相等的圆内接多边形是否为正多边形?三、典型例题例1.已知正六边形ABCDEF,如图所示,其外接圆的半径是a,求正六边形的周长和面积.(分析:要求正六边形的周长,只要求AB的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA,过O点作OM⊥AB垂于M,在Rt△AOM中便可求得AM,又应用垂径定理可求得AB的长.正六边形的面积是由六块正三角形面积组成的)例2.利用你手中的工具画一个边长为3cm的正五边形.四、课堂练习 1、正方形ABCD的外接圆圆心O叫做正方形ABCD的______. 2、正方形ABCD的内切圆⊙O的半径OE叫做正方形ABCD的______. 3、若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是______,它的每一个内角是______. 4、正n边形的一个外角度数与它的______角的度数相等.五、课堂小结1、正多边形的概念、正多边形与圆的关系以及正多边形的对称性;2、利用直尺与圆规作 内容来自淘豆网www.taodocs.com转载请标明出处.