下载此文档

步进电机细分控制原理及仿真分析讲义.ppt


文档分类:通信/电子 | 页数:约13页 举报非法文档有奖
1/13
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/13 下载此文档
文档列表 文档介绍
,定子8槽,转子为永磁体。两端N、S极各100齿错开。步进电机简要理论A相磁通链:ΦA=ΦMAX×cos(Ntθm)ΦMAX为磁通链最大值;为转子变位角。转矩为磁通链对于角度的导数和电流值的乘积。单相转矩:TA=-KT×i×sin(Ntθm)=-KT×i×sinθe对AB相电流分别为i×cosα,i×sinα因为各齿相邻,最终计算得合转矩为:KT×i×cos(α-θe)。对α-θe趋于0,合力矩为i×KT。近似恒定值。ANBASB--SNNNNSSSS定子转子ANBASB--SNNNNSSSS定子转子ANBASB--SNNNNSSS定子转子NANBASB--SNNNNSSS定子转子NS轮流对AB相通电,电机转子定向转动。步进电机脉冲控制原理传统的步进电机脉冲控制是用一对相位差90度的方波来驱动步进电机的A、B相线圈电流,以达到定向转动的目的。以A相线圈通电超前B相90度时,方向为正。当线圈B相超前A相90度通电时,电机反方向转。控制两相线圈导通脉冲的相位就能控制步进电机的转向。每1/。通过控制脉冲的频率就可以控制电机的转速。步进电机细分控制原理细分控制方法是通过精确控制步进电机的A、B相电流,分别按照正余弦曲线变化。这样产生的合力矩大小恒定,径向分力极小。将1个步进角()分成128个微步,通过控制两相电流,可以停到其中任一个微步的位置上。图2为正向时A、B相线圈的电流波形示意图。以X点为例,A、B相分别通以电流Ixa、Ixb时,两相线圈合力使转子可以稳定停在X点上。由于电机不是跳跃转动,相对传统控制方案,只需要较小的转矩就可以实现不丢步启动。因为要精确控制两相线圈的电流,而且电流需要换向,即存在正负两种电流,所以硬件电路设计和控制算法都比较复杂。步进电机控制原理A3988电机驱动芯片内部框图1)PHASE1/2/3/4分别控制1/2/3/4线圈电流的方向。2)VREF1/2/3/4分别控制1/2/3/4线圈电流的大小。3)VREF1/2为一对,分别用正余弦(半波)驱动。PHASE1/2在相应VREF1/2波形的过0点切换。步进电机仿真模型1)电机:,。R+L简化模型。2)驱动波形:以转台最高转速450度/秒为参照,:4的机械变比,可以使用50V/500Hz交流电源,经全桥整流再分压得到一对近似的正余弦(半波)。并且产生同步的相位信号。3)电机驱动芯片:按A3988的模块框图及行为描述进行简要的电路模型建立。为减小仿真运算量,并简化电路,全部使用快衰减方式。电流关断时间通过RC设置为与A3988一致的30us。4)反馈回路:反馈电阻取1欧。为简化电路,省略反馈1/3分压。步进电机仿真波形上边蓝色为参考电平;黄色为反馈电压;紫色和绿色为电感等效串阻两端电压;红色正弦曲线是串阻两端电压差,反应出电机内实际电流。电机速度较低时,线圈电流上升速度和下降速度都能跟上参考电平变化。电机运行平稳。但需要注意当参考电平接近0时,有一小段范围电机里的电流为0,会导致极低速高细分时电机的短暂停顿,感觉不连贯。可以增大反馈电平(对应增加电流或反馈电阻,但受效率及其它问题约束);也可以进行正余弦校正,可以起到更好的效果。步进电机仿真分析电机速度较高时,线圈电流上升速度明显滞后于参考电平信号,导致电流变形。电流上升期间回馈电压一直小于参考电压,所以对应的一对MOS管一直导通。减小线圈电阻值或加大电压会有改善。电流下降期间需预防参考电压降到0点时电流无法降到0的情况。否则会导致电流未减到0而开始换向,会产生较大噪声。可以使用快衰减或适当增大线圈电阻。也可对波形进行校正。步进电机仿真模型

步进电机细分控制原理及仿真分析讲义 来自淘豆网www.taodocs.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息