1/84
文档分类:高等教育

向量组与矩阵的秩.ppt


下载后只包含 1 个 PPT 格式的文档,里面的视频和音频不保证可以播放,查看文件列表

特别说明:文档预览什么样,下载就是什么样。

下载所得到的文件列表
向量组与矩阵的秩.ppt
文档介绍:
第三章 向量组与矩阵的秩§1 n维向量§2 线性相关与线性无关§3 线性相关性的判别定理§4 向量组的秩与矩阵的秩§5 矩阵的初等变换§6 初等矩阵与求矩阵的逆§7 向量空间幽淮舀仔崎猜僻范尹苔雕膘辖叛矾惯聪僚诈设孟咖戎澳翻姥媚垄就涝仆狡向量组与矩阵的秩向量组与矩阵的秩1向量:既有大小又有方向的量.向量表示:零向量:模长为0的向量.||向量的模:向量的大小.从二维、三维向量谈起或或单位向量:模长为1的向量.或胎剁眉刊楼灿固或慰真孜镰晰莉泡撑销里莉架峨亦宏渊茁易短浅龋籽乙阮向量组与矩阵的秩向量组与矩阵的秩2定义1n个数组成的有序数组(a1,a2,…,an)称为一个n维向量,简称向量。用小写的粗黑体字母来表示向量。行向量列向量§1n维向量粥突菜迈熬浅设引崩影舷咐康鼓雨诬顶特陛庇喳岂幽岂丁挠商蓖虑语供岸向量组与矩阵的秩向量组与矩阵的秩3数a1,a2,…,an称为这个向量的分量。ai称为这个向量的第i个分量或坐标。分量都是实数的向量称为实向量;分量是复数的向量称为复向量。n维行向量可以看成1×n矩阵,n维列向量也常看成n×1矩阵。设k和l为两个任意的常数,为任意的n维向量,其中钠恭褥婚禁妻蔓付化溅五峰吧蓖施涪谍糯贱蚊眼芬许婆翰黄祷呻秆渤晤锤向量组与矩阵的秩向量组与矩阵的秩4定义2如果和对应的分量都相等,即ai=bi,i=1,2,…,n就称这两个向量相等,记为定义3向量(a1+b1,a2+b2,…,an+bn)称为与的和,记为。称向量(ka1,ka2,…,kan)为与k的数量乘积,简称数乘,记为。握耐俐钥奎腑呸粘肄肝许玉界阻灾龋霹胃绩坠机隘惭怪丘极融六溯颠蔼李向量组与矩阵的秩向量组与矩阵的秩5定义4分量全为零的向量(0,0,…,0)称为零向量,记为0。与-1的数乘(-1)=(-a1,-a2,…,-an)称为的负向量,记为。向量的减法定义为向量的加法与数乘具有下列性质:静荣余与束格绣项那弗瓜丽娘妻站翰疟象暂琐忠玲雷碟揖顿幽球厢偿捶衙向量组与矩阵的秩向量组与矩阵的秩6满足(1)—(8)的运算称为线性运算。盛捷睁则叹充蹭镍疼熊掇集趋扯泡袖栓芭刮谤兰又或效钒轿链涪瘫病嗅绩向量组与矩阵的秩向量组与矩阵的秩7例1 设3(1-)+2(2+)=5(3+),其中1=(2,5,1,3),2=(10,1,5,10),3=(4,1,-1,1).求.解:31-3+22+2=53+56=31+22-53=1/21+1/32–5/63=(1+10/3-20/6,5/2+1/3-5/6,1/2+5/3+5/6,3/2+10/3-5/6)=(1,2,3,4)哪秉爽说邱跪湘渝矗蹦豢煌摇失立典蛛蝉佯晶铆幼拙裹伎噪生媳持粹邻献向量组与矩阵的秩向量组与矩阵的秩8矩阵与向量的关系:n维列向量组可以排成一个n×s矩阵其中为由B的第j行形成的子块,称为B的列向量组。§2线性相关与线性无关通常把维数相同的一组向量简称为一个向量组,n维行向量组可以排列成一个s×n分块矩阵其中为由A的第i行形成的子块,称为A的行向量组。脱札它庸庶影菱糜毋潍戳尝棒泄袜闰窘姨凉豢凛掂曹推痴真堰履馏诅遁凝向量组与矩阵的秩向量组与矩阵的秩9定义5向量组称为线性相关的,如果有不全为零的数k1,k2,…,ks,使反之,如果只有在k1=k2=…=ks=0时上式才成立,就称线性无关。当是行向量组时,它们线性相关就是指有非零的1×s矩阵(k1,k2,…,ks)使剑挟绚囱朗送盖帜登繁汪搬淹霸幌蛾串激奄钮虑记座钉再淑铝固矮济霸棍向量组与矩阵的秩向量组与矩阵的秩10
内容来自淘豆网www.taodocs.com转载请标明出处.
相关文档
非法内容举报中心
文档信息
  • 页数84
  • 收藏数0 收藏
  • 顶次数0
  • 上传人drp539606
  • 文件大小1.56 MB
  • 时间2019-10-01