淘豆网
1/21
文档分类:中学教育 > 高中教育

高中立体几何知识点总结及例题上.ppt


下载后只包含 1 个 PPT 格式的文档,里面的视频和音频不保证可以播放,查看文件列表

特别说明:文档预览什么样,下载就是什么样。

0/100
您的浏览器不支持进度条
更多>>该用户其他文档
下载所得到的文件列表
高中立体几何知识点总结及例题上.ppt
文档介绍:
高中立体几何知识点总结及例题上.ppt数学立体几何一、空间多边形及一些基本定义1、.空间多边形不在同一平面内的若干线段首尾相接所成的图形叫做空间折线.2、若空间折线的最后一条线段的尾端与最初一条线段的首端重合,则叫做封闭的空间折线.3、若封闭的空间折线各线段彼此不相交,则叫做这空间多边形平面,平面是一个不定义的概念,几何里的平面是无限伸展的.4、平面通常用一个平行四边形来表示.5、平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.6、在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:A∈l—点A在直线l上;Aα—点A不在平面α内;l属于α—直线l在平面α内;a不属于α—直线a不在平面α内;l∩m=A—直线l与直线m相交于A点;α∩l=A—平面α与直线l交于A点;α∩β=l—平面α与平面β相交于直线l.shu二.平面的基本性质公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3经过不在同一直线上的三个点,有且只有一个平面.根据上面的公理,可得以下推论.推论1经过一条直线和这条直线外一点,有且只有一个平面.推论2经过两条相交直线,有且只有一个平面.推论3经过两条平行直线,有且只有一个平面.三.空间线面的位置关系共面平行—没有公共点(1)直线与直线相交—有且只有一个公共点异面(既不平行,又不相交)直线在平面内—有无数个公共点(2)直线和平面直线不在平面内平行—没有公共点相交—有且只有一公共点(3)平面与平面相交—有一条公共直线(无数个公共点)平行—没有公共点、四.异面直线的判定证明两条直线是异面直线通常采用反证法.有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”.五.线面平行与垂直的判定(1)两直线平行的判定①定义:在同一个平面内,且没有公共点的两条直线平行.②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,aβ,α∩β=b,则a∥b.③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c.④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b.例1、已知四边形是ABCD空间四边形,E、F、G、H分别是四边的中点求证:EFGH是平行四边形AHGFEDCB(2)两直线垂直的判定①定义:若两直线成90°角,则这两直线互相垂直.②一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即若b∥c,a⊥b,则a⊥c③一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.即若a⊥α,bα,a⊥b.④三垂线定理和它的逆定理:在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直.⑤如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a∥α,b⊥α,则a⊥b.⑥三个两两垂直的平面的交线两两垂直,即若α⊥β,β⊥γ,γ⊥α,且α∩β=a,β∩γ=b,γ∩α=c,则a⊥b,b⊥c,c⊥a.例2、如图P是所在平面外一点,平面PAB,M是PC的中点,N是AB上的点,(1)求证:;(2)当,时,求MN的长。 内容来自淘豆网www.taodocs.com转载请标明出处.
更多>> 相关文档
非法内容举报中心
文档信息
  • 浏览:
  • 页数:21
  • 收藏数:0 收藏
  • 顶次数:0
  • 上传人:lily8501
  • 时间:2019-10-09
  • 文件大小:143 KB
  • 下载次数:
最近更新
文档标签