1/14
文档分类:高等教育

闭区间上连续函数的性质介值定理培训课件.ppt


下载后只包含 1 个 PPT 格式的文档,里面的视频和音频不保证可以播放,查看文件列表

特别说明:文档预览什么样,下载就是什么样。

0/100
您的浏览器不支持进度条
下载所得到的文件列表
闭区间上连续函数的性质介值定理培训课件.ppt
文档介绍:
闭区间上连续函数的性质介值定理培训课件.ppt闭区间上连续函数的性质最大值和最小值定理介值定理一、最大值和最小值定理P55定义:例如,定理1(最大值和最小值定理)在闭区间上连续的函数一定有最大值和最小值.注意:1.若区间是开区间,定理不一定成立;2.若区间内有间断点,定理不一定成立.证:∴取当|x|>X时,|f(x)-A|<1又||f(x)|-|A||<|f(x)-A|<1,即:|f(x)|<|A|+1∵f(x)在(-∞,+∞)上连续,∴f(x)在[-X,X]上连续。由最值定理,M0>0,xX,都有|f(x)|<M0取M=max{|A|+1,M0},例1设f(x)在(-∞,+∞)上连续,且存在,证明f(x)在(-∞,+∞)上有界。有渐近线二、介值定理定义:几何解释:几何解释:MBCAmab证由零点定理,推论在闭区间上连续的函数必取得介于最大值与最小值之间的任何值.例1证由零点定理,例2证由零点定理, 内容来自淘豆网www.taodocs.com转载请标明出处.