1/2
文档分类:生活休闲

.排列 三.doc


下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

特别说明:文档预览什么样,下载就是什么样。

0/100
您的浏览器不支持进度条
下载所得到的文件列表
.排列 三.doc
文档介绍:
§10.2排列(三)一.教学目的:要求学生熟练掌握排列数公式;熟悉并掌握一些分析和解决排列问题的基本方法;能运用已学的排列知识,正确地解决简单的实际问题.二.教学重点:分析和解决排列问题的基本方法.三.教学难点:分析和解决排列问题的基本方法.四.课时安排:1课时.五.教学过程:(一)复习引入:复习两个原理,排列、排列数的概念,排列数计算公式,全排列及阶乘的概念.(二)例题讲解:例1.(1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?解:(1)从5本不同的书中选出3本分别送给3名同学,对应于从5个元素中任取3个元素的一个排列,因此不同送法的种数是:,所以,共有60种不同的送法.(2)由于有5种不同的书,送给每个同学的1本书都有5种不同的选购方法,因此送给3名同学,每人各1本书的不同方法种数是:,所以,共有125种不同的送法.例2.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?解:分3类:第一类用1面旗表示的信号有种;第二类用2面旗表示的信号有种;第三类用3面旗表示的信号有种,由分类计数原理,所求的信号种数是:,答:一共可以表示15种不同的信号例3.将位司机、位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?解:由分步计数原理,分配方案共有(种)答:共有576种不同的分配方案.例4.用0到9这10个数字,可以组成多少个没有重复数字的三位数?百位十位个位解法1:用分步计数原理:所求的三位数的个数是:个位十位百位个位十位百位个位十位百位解法2:符合条件的三位数可以分成三类:每一位数字都不是0的三位数有个,个位数字是0的三位数有个,十位数字是0的三位数有个,由分类计数原理,符合条件的三位数的个数是:.解法3:从0到9这10个数字中任取3个数字的排列数为,其中以0为排头的排列数为,因此符合条件的三位数的个数是-.例5.(1)7位同学站成一排,共有多少种不同的排法?解:问题可以看作:7个元素的全排列=5040.(2)7位同学站成两排(前3后4),共有多少种不同的排法?解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040.(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?解:问题可以看作:余下的6个元素的全排列——=720.(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?解:根据分步计数原理:第一步甲、乙站在两端有种;第二步余下的5名同学进行全排列有种,所以,共有=240种排列方法(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法1(直接法):第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有种方法;第二步从余下的5位同学中选5位进行排列(全排列)有种方法,所以一共有=2400种排列方法.解法2:(排除法)若甲站在排头有种方法;若乙站在排尾有种方法;若甲站在排头且乙站在排尾则有种方法,所以,甲不能站在排头,乙不能排在排尾的排法共有-+=2400种.(三)课堂练习预备题1.将1,2,3,4填入标号为1,2,3,4的四个方格里,每格 内容来自淘豆网www.taodocs.com转载请标明出处.