1/6
文档分类:中学教育

函数、不等式恒成立问题.doc


下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

特别说明:文档预览什么样,下载就是什么样。

0/100
您的浏览器不支持进度条
下载所得到的文件列表
函数、不等式恒成立问题.doc
文档介绍:
函数、不等式恒成立问题教学目标:通过对不同问题的解题探讨归纳该类问题的一般解法培养学生的分析问题和灵活应用知识解决问题的能力培养学生的数形结合能力重难点:分析解决问题的能力,数形结合思想方法的应用教学方法:指导练习法教学过程:复习回顾引例:已知二次函数满足且.(1)求的解析式;(2)求在区间上的最大值和最小值。(3)当时,不等式:恒成立,求的范围。二、归纳:(恒成立问题的基本类型)类型1:设,(1)上恒成立;(2)上恒成立。类型2:设(1)当时,上恒成立,上恒成立(2)当时,上恒成立上恒成立类型3:。类型4:三、例题讲评例1:若不等式对满足的所有都成立,求x的范围。解析:我们可以用改变主元的办法,将m视为主变元,即将元不等式化为:,;令,则时,恒成立,所以只需即,所以x的范围是。例2:若不等式的解集是R,求m的范围。解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m,所以要讨论m-1是否是0。(1)当m-1=0时,元不等式化为2>0恒成立,满足题意;(2)时,只需,所以,。变式:若不等式在上恒成立,求m的范围。若不等式在上恒成立,求m的范围。若不等式在上恒成立,求x的范围。例3:已知,求实数a的取值范围。解析:由,在同一直角坐标系中做出两个函数的图象,如果两个函数分别在x=-1和x=1处相交,则由得到a分别等于2和0.5,并作出函数的图象,所以,要想使函数在区间中恒成立,只须在区间对应的图象在在区间对应图象的上面即可。当才能保证,而才可以,所以。四:小结对不同的问题的采取的方法是不一样的,要根据具体的情境灵活选择。但一定要借助图像去分析才能选择好恰当的方法去解题。在分类讨论时要注意分类的完整性和合理性,在等号成立的情况下一定要仔细思考。五:同步练习1、设其中,如果时,恒有意义,求的取值范围。分析:如果时,恒有意义,则可转化为恒成立,即参数分离后,恒成立,接下来可转化为二次函数区间最值求解。解:如果时,恒有意义,对恒成立.恒成立。令,又则对恒成立,又在上为减函数,,。2、设函数是定义在上的增函数,如果不等式对于任意恒成立,求实数的取值范围。分析:本题可利用函数的单调性把原不等式问题转化为对于任意恒成立,从而转化为二次函数区间最值求解。解:是增函数对于任意恒成立对于任意恒成立对于任意恒成立,令,,所以原问题,又即易求得。设f(x)=x2-2ax+2,当x[-1,+)时,都有f(x)a恒成立,求a的取值范围。分析:在f(x)a不等式中,若把a移到等号的左边,则原问题可转化为二次函数区间恒成立问题。解:设F(x)=f(x)-a=x2-2ax+2-a.ⅰ)当=(-2a)2-4(2-a)=4(a-1)(a+2)<0时,即-2<a<1时,对一切x[-1,+),F(x)0恒成立;ⅱ)当=4(a-1)(a+2)0时由图可得以下充要条件:-1oxy即得-3a-2;综上所述:a的取值范围为[-3,1]。4、当x(1,2)时,不等式(x-1)2<logax恒成立,求a的取值范围。分析:若将不等号两边分别设成两个函数,则左边为二次函数,右边为对数函数,故可以采用数形结合借助图象位置关系通过特指求解a的取值范围。xyo12y1=(x-1)2y2=logax解:设T1:=,T2:,则T1的图象为右图所示的抛物线,要使对一切x(1,2),<恒成立即T1的 内容来自淘豆网www.taodocs.com转载请标明出处.