1/39
文档分类:中学教育

著名数学定理1.doc


下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

特别说明:文档预览什么样,下载就是什么样。

0/100
您的浏览器不支持进度条
下载所得到的文件列表
著名数学定理1.doc
文档介绍:
著名数学定理15定理15-定理是由约翰·何顿·康威(JohnHortonConway,1937-)和W.A.Schneeberger于1993年证明的定理,内容为:如果一个二次多项式可以通过变量取整数值而表示出1~15的值(更严格的结论是只要表示出1,2,3,5,6,7,10,14,15)的话(例如a2+b2+c2+d2),该二次多项式可以通过变量取整数值而表示出所有正整数.6714(黑洞数)定理黑洞数又称陷阱数,是类具有奇特转换特性的整数.任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数.“重排求差”操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数.或者是冰雹原理中的“1”黑洞数.举个例子,三位数的黑洞数为495.简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693.按上面做法再做一次,得到594,再做一次,得到495.之后反复都得到495.再如,四位数的黑洞数有6174.阿贝尔-鲁菲尼定理定理定义:阿贝尔-鲁菲尼定理并不是说明五次或更高次的多项式方程没有解.事实上代数基本定理说明任意非常数的多项式在复数域中都有根.然而代数基本定理并没有说明根的具体形式.通过数值方法可以计算多项式的根的近似值,但数学家也关心根的精确值,以及它们能否通过简单的方式用多项式的系数来表示.例如,任意给定二次方程ax2+bx+c=0(a≠0),它的两个解可以用方程的系数来表示:.这是一个仅用有理数和方程的系数,通过有限次四则运算和开平方得到的解的表达式,称为其代数解.三次方程,四次方程的根也可以使用类似的方式来表示.阿贝尔-鲁菲尼定理的结论是:任意给定一个五次或以上的多项式方程: ,那么不存在一个通用的公式(求根公式),使用  和有理数通过有限次四则运算和开根号得到它的解.或者说,当n大于等于5时,存在n次多项式,它的根无法用自己的系数和有理数通过有限次四则运算和开根号得到.换一个角度说,存在这样的实数或复数,它满足某个五次或更高次的多项式方程,但不能写成任何由方程系数和有理数构成的代数式.这并不是说每一个五次或以上的多项式方程,都无法求得代数解.比如的解就是.具体区分哪些多项式方程可以有代数解而哪些不能的方法由伽罗瓦给出,因此相关理论也被称为伽罗瓦理论.简单来说,某多项式方程有代数解,等价于说它对应的域扩张上的伽罗瓦群是一个可解群.对于一般的二次,三次和四次方程,它们对应的伽罗瓦群是二次,三次和四次对称群:  ,它们都是可解群.但一般的五次方程对应的是五次对称群,这是一个不可解群.当次数n大于等于5时,情况也是如此.阿贝尔二项式定理二项式定理可以用以下公式表示:.其中,,又有  等记法,称为二项式系数,即取的组合数目.此系数亦可表示为杨辉三角形.它们之间是互通的关系.艾森斯坦因判别法艾森斯坦判别法是说:给出下面的整系数多项式如果存在素数p,使得p不整除an ,但整除其他ai(i=0,1,...,n-1);p²不整除a0 ,那么f(x)在有理数域上是不可约的.阿基米德折弦定理奥尔定理离散数学中图论的一个定理)如果一个总点数至少为3的简单图G满足:G的任意两个点u和v度数之和至少为n,即deg(u)+deg(v)≥n,那么G必然有哈密顿回路.它描述了简单图拥有哈密顿回路的一个充分条件.表达式deg(u)+deg(v)≥n→G有哈密顿通路相关概念:简单图:没有重边和环的无向图.度数:某点所连接的边的数目.哈密顿回路:经过图的所有的点的一条回路.阿基米德折弦定理(阿基米德中点定理)AB和BC是⊙O的两条弦(即ABC是圆的一条折弦),BC>AB,M是弧ABC的中点,则从M向BC所作垂线之垂足D是折弦ABC的中点,即CD=AB+BD.折弦定义:从圆周上任一点出发的两条弦,所组成的折线,我们称之为该图的一条折弦.伯特兰·切比雪夫定理伯特兰·切比雪夫定理说明:若整数n>3,则至少存在一个质数p,符合n<p<2n−2.另一个稍弱说法是:对于所有大于1的整数n,存在一个质数p,符合n<p<2n.贝亚蒂定理定义一个正无理数r的贝亚蒂列Br为Br=[r],[2r],[3r],...=[nr](n≥1),这里的[]是取整函数.若然有两个正无理数p,q且,(即) ,则Bp=[np](n≥1),Bq=[nq](n≥1)构成正整数集的一个分划:.布利安桑定理布利安桑定理叙述如下:如果六边形的边交替地通过两个定点P和Q,则连接六边形的相对的顶点的三条对角线是共点的.布列安桑(Brainchon)定理是一个射影几何中的著名定理,它断言六条边和一条圆锥曲线相切的六边形的三条对角线共点,此点称为该六边形的布列安桑点.布朗定理设P(x)为满足p≤ x的素数数目,使得p+2也是素数 内容来自淘豆网www.taodocs.com转载请标明出处.