1/4
文档分类:高等教育

苏教版高二上册数学线性回归方程说课稿范文.doc


下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

特别说明:文档预览什么样,下载就是什么样。

下载所得到的文件列表
苏教版高二上册数学线性回归方程说课稿范文.doc
文档介绍:
苏教版高二上册数学线性回归方程说课稿范文.doc第2页 /总页数 4 页
苏教版高二上册数学线性回归方程说课稿范文

教学目标
(1)通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;(2)在两个变量具有线性相关关系时,会在散点较长中作出线性直线,会用线性回归方程进行预测;(3)知道最小二乘法的含义,知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程,了解(线性)相关系数的定义.教学重点散点图的画法,回归直线方程的求解方法.教学难点回归直线方程的求解方法.教学过程
一、问题情境1.情境:客观事物是相互联系的 过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系 比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说 事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学****能力和努力程度 所以说,函数关系存在着一种确定性关系 但还存在着另一种非确定性关系——相关关系2.问题:某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:气温/ C261813104杯数202434385064如果某天的气温是 ,你能根据这些数据预测这天小卖部卖出热茶的杯数吗?
二、学生活动为了了解热茶销量与气温的大致关系,我们以横坐标 表示气温,纵坐标 表示热茶销量,建立直角坐标系,将表中数据构成的 个数对所表示的点在坐标系内标出,得到下图,今后我们称这样的图为散点图(scatterplot).从右图可以看出.这些点散布在一条直线的附近,故可用一个线性函数近似地表示热茶销量与气温之间的关系.选择怎样的直线近似地表示热茶销量与气温之间的关系?我们有多种思考方案:(1)选择能反映直线变化的两个点,例如取 这两点的直线;(2)取一条直线,使得位于该直线一侧和另一侧的点的个数基本相同;(3)多取几组点,确定几条直线方程,再分别算出各条直线斜率、截距的平均值,作为所求直线的斜率、截距;………………怎样的直线呢?
第2页 /总页数 4 页
三、建构数学1.最小平方法:用方程为 的直线拟合散点图中的点,应使得该直线与散点图中的点最接近。那么,怎样衡量直线 与图中六个点的接近程度呢?我们将表中给出的自变量 的六个值带入直线方程,得到相应的六个 的值:.这六个值与表中相应的实际值应该越接近越好.所以,我们用类似
于估计平均数时的思想,考虑离差的平方和是直线 与各散点在垂直方向(纵轴方向)上的距离的平方和,可以用来衡量直线 与图中六个点的接近程度,所以,设法取 的值,使 达到最小值.这种方法叫做最小平方法(又称最小二乘法) .先把 看作常数,那么 是关于 的二次函数.易知,当 时, 取得最小值.同理, 把 看作常数,那么 是关于 的二次函数.当 时, 取得最小值.因此,当 时, 取的最小值,由此解得 .所求直线方程为 .当 时, ,故当气温为 时,热茶销量约为 杯.2.线性相关关系:像能用直线方程 近似表示的相关关系叫做线性相关关系.3.线性回归方程:一般地,设有 个观察数据如下:……当 使 取得最小值时,就称 为拟合这 对数据的线性回归方程,该方程所表示的直线称为回归直线.上
内容来自淘豆网www.taodocs.com转载请标明出处.