下载此文档

用FFT对信号作频谱分析 (2).doc


文档分类:通信/电子 | 页数:约9页 举报非法文档有奖
1/9
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/9 下载此文档
文档列表 文档介绍
该【用FFT对信号作频谱分析 (2) 】是由【1542605778】上传分享,文档一共【9】页,该文档可以免费在线阅读,需要了解更多关于【用FFT对信号作频谱分析 (2) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。河北联合大学轻工学院
信息科学与技术部
数字信号处理
实验名称:用FFT对信号作频谱分析
班级:通信三班
学号:201124440317
姓名:刘芳
指导老师:崔东艳
实验名称:用FFT对信号作频谱分析学生姓名:刘芳班级:通信三班学号:201124440317
指导老师:崔东艳同组人:成绩:
预****报告
实验目的:
学****用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析
误差及其原因,以便正确应用FFT。
实验要求:
(1)完成各个实验任务和要求。附上程序清单和有关曲线。
(2)简要回答思考题。
实验报告
实验目的:
学****用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析
误差及其原因,以便正确应用FFT。
实验要求:
用FFT对信号作频谱分析是学****数字信号处理的重要内容。经常需要进行谱分析的信号是模拟信号和时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D和分析误差。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是,因此要求。可以根据此式选择FFT的变换区间N。误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时离散谱的包络才能逼近于连续谱,因此N要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT,得到的离散谱才能代表周期信号的频谱。如果不知道信号周期,可以尽量选择信号的观察时间长一些。
对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
实验方法(步骤及结果):
(1)对以下序列进行谱分析。
选择FFT的变换区间N为8和16两种情况进行频谱分析。分别打印其幅频特性曲线。并进行对比、分析和讨论。
(2)对以下周期序列进行谱分析。
选择FFT的变换区间N为8和16两种情况分别对以上序列进行频谱分析。分别打印其幅频特性曲线。并进行对比、分析和讨论。
(3)对模拟周期信号进行谱分析
选择采样频率,变换区间N=16,32,64三种情况进行谱分析。分别打印其幅频特性,并进行分析和讨论。
(可附程序):
%实验内容(1)===================================================
x1n=[ones(1,4)];%产生序列向量x1(n)=R4(n)
M=8;xa=1:(M/2);xb=(M/2):-1:1;x2n=[xa,xb];%产生长度为8的三角波序列x2(n)
x3n=[xb,xa];
X1k8=fft(x1n,8);%计算x1n的8点DFT
X1k16=fft(x1n,16);%计算x1n的16点DFT
X2k8=fft(x2n,8);%计算x1n的8点DFT
X2k16=fft(x2n,16);%计算x1n的16点DFT
X3k8=fft(x3n,8);%计算x1n的8点DFT
X3k16=fft(x3n,16);%计算x1n的16点DFT
%以下绘制幅频特性曲线
subplot(2,2,1);stem(abs(X1k8),'.');%绘制8点DFT的幅频特性图
title('(1a)8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');
subplot(2,2,3);stem(abs(X1k16),'.');%绘制16点DFT的幅频特性图
title('(1b)16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');
figure(2)
subplot(2,2,1);stem(abs(X2k8),'.');%绘制8点DFT的幅频特性图
title('(2a)8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');
subplot(2,2,2);stem(abs(X2k16),'.');%绘制16点DFT的幅频特性图
title('(2b)16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');
subplot(2,2,3);stem(abs(X3k8),'.');%绘制8点DFT的幅频特性图
title('(3a)8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');
subplot(2,2,4);stem(abs(X3k16),'.');%绘制16点DFT的幅频特性图
title('(3b)16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');
%实验内容(2)周期序列谱分析==================================
N=8;n=0:N-1;%FFT的变换区间N=8
x4n=cos(pi*n/4);
x5n=cos(pi*n/4)+cos(pi*n/8);
X4k8=fft(x4n);%计算x4n的8点DFT
X5k8=fft(x5n);%计算x5n的8点DFT
N=16;n=0:N-1;%FFT的变换区间N=16
x4n=cos(pi*n/4);
x5n=cos(pi*n/4)+cos(pi*n/8);
X4k16=fft(x4n);%计算x4n的16点DFT
X5k16=fft(x5n);%计算x5n的16点DFT
figure(3)
subplot(2,2,1);stem(abs(X4k8),'.');%绘制8点DFT的幅频特性图
title('(4a)8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');
subplot(2,2,3);stem(abs(X4k16),'.');%绘制16点DFT的幅频特性图
title('(4b)16点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');
subplot(2,2,2);stem(abs(X5k8),'.');%绘制8点DFT的幅频特性图
title('(5a)8点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');
subplot(2,2,4);stem(abs(X5k16),'.');%绘制16点DFT的幅频特性图
title('(5b)16点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');
%实验内容(3)模拟周期信号谱分析===============================
figure(4)
Fs=64;T=1/Fs;
N=16;n=0:N-1;%FFT的变换区间N=16
x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);%对x6(t)16点采样
X6k16=fft(x6nT);%计算x6nT的16点DFT
X6k16=fftshift(X6k16);%将零频率移到频谱中心
Tp=N*T;F=1/Tp;%频率分辨率F
k=-N/2:N/2-1;fk=k*F;%产生16点DFT对应的采样点频率(以零频率为中心)
subplot(3,1,1);stem(fk,abs(X6k16),'.');boxon%绘制8点DFT的幅频特性图
title('(6a)16点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');
axis([-N*F/2-1,N*F/2-1,0,*max(abs(X6k16))])
N=32;n=0:N-1;%FFT的变换区间N=16
x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);%对x6(t)32点采样
X6k32=fft(x6nT);%计算x6nT的32点DFT
X6k32=fftshift(X6k32);%将零频率移到频谱中心
Tp=N*T;F=1/Tp;%频率分辨率F
k=-N/2:N/2-1;fk=k*F;%产生16点DFT对应的采样点频率(以零频率为中心)
subplot(3,1,2);stem(fk,abs(X6k32),'.');boxon%绘制8点DFT的幅频特性图
title('(6b)32点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');
axis([-N*F/2-1,N*F/2-1,0,*max(abs(X6k32))])
N=64;n=0:N-1;%FFT的变换区间N=16
x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);%对x6(t)64点采样
X6k64=fft(x6nT);%计算x6nT的64点DFT
X6k64=fftshift(X6k64);%将零频率移到频谱中心
Tp=N*T;F=1/Tp;%频率分辨率F
k=-N/2:N/2-1;fk=k*F;%产生16点DFT对应的采样点频率(以零频率为中心)
subplot(3,1,3);stem(fk,abs(X6k64),'.');boxon%绘制8点DFT的幅频特性图
title('(6a)64点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');
axis([-N*F/2-1,N*F/2-1,0,*max(abs(X6k64))])
实验结果:
请读者注意,用DFT(或FFT)分析频谱,绘制频谱图时,最好将X(k)的自变量k换算成对应的频率,作为横坐标便于观察频谱。
为了便于读取频率值,最好关于π归一化,即以作为横坐标。
1、实验内容(1)
图(1a)和(1b)说明的8点DFT和16点DFT分别是的频谱函数的8点和16点采样;
因为,所以,与的8点DFT的模相等,如图(2a)和(3a)。但是,当N=16时,与不满足循环移位关系,所以图(2b)和(3b)的模不同。
2、实验内容(2),对周期序列谱分析
的周期为8,所以N=8和N=16均是其周期的整数倍,得到正确的单一频率正弦波的频谱,。如图(4b)和(4b)所示。
的周期为16,所以N=8不是其周期的整数倍,得到的频谱不正确,如图(5a)所示。N=16是其一个周期,得到正确的频谱,,如图(5b)所示。
3、实验内容(3),对模拟周期信号谱分析
有3个频率成分,。。采样频率。变换区间N=16时,观察时间Tp=16T=,不是的整数倍周期,所以所得频谱不正确,如图(6a)所示。变换区间N=32,64时,观察时间Tp=,1s,是的整数周期,所以所得频谱正确,如图(6b)和(6c)所示。图中3根谱线正好位于处。变换区间N=64时频谱幅度是变换区间N=32时2倍,这种结果正好验证了用DFT对中期序列谱分析的理论。
注意:
(1)用DFT(或FFT)对模拟信号分析频谱时,最好将X(k)的自变量k换算成对应的模拟频率fk,作为横坐标绘图,便于观察频谱。这样,不管变换区间N取信号周期的几倍,画出的频谱图中有效离散谐波谱线所在的频率值不变,如图(6b)和(6c)所示。
(2)本程序直接画出采样序列N点DFT的模值,实际上分析频谱时最好画出归一化幅度谱,这样就避免了幅度值随变换区间N变化的缺点。本实验程序这样绘图只要是为了验证了用DFT对中期序列谱分析的理论。
思考题:
(1)对于周期序列,如果周期不知道,如何用FFT进行谱分析?
(2)如何选择FFT的变换区间?(包括非周期信号和周期信号)
(3)当N=8时,和的幅频特性会相同吗?为什么?N=16呢?
(1)答:设一个定长的值m与2m分析后误差大,则取4n,4m的谱分析与2m比较,直到2nm与2n-1m谱分析相差不多时便认为2nm次谱分析近似原来的谱分析。
(2)答:周期为N的信号可以看做长度为N的有限长序列,非周期信号可以看做长度为无穷的有限序列。
(3)答:当N=8时,幅频特性相同,因为它们函数表达的相同。当N=16时,模值不同。

用FFT对信号作频谱分析 (2) 来自淘豆网www.taodocs.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数9
  • 收藏数0 收藏
  • 顶次数0
  • 上传人1542605778
  • 文件大小151 KB
  • 时间2023-03-13