下载此文档

人教版初一数学下册期末复习试卷A(有答案).pdf


文档分类:中学教育 | 页数:约16页 举报非法文档有奖
1/16
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/16 下载此文档
文档列表 文档介绍
该【人教版初一数学下册期末复习试卷A(有答案) 】是由【hh思密达】上传分享,文档一共【16】页,该文档可以免费在线阅读,需要了解更多关于【人教版初一数学下册期末复习试卷A(有答案) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。:.
人教版初一数学下册期末复****试卷A
学校:___________姓名:___________班级:___________考号:___________
题号一二三总分
得分
评卷人得分
(共10小题)
,适合采用全面调查(普查)方式的是()


***燃放质量情况的调查

,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为()
°°°°
,已知∠1+∠2=180°,∠3=55°.那么∠4的度数是()
°°°°
,b在数轴上的对应点的位置如图所示,则正确的结论是()
>﹣>﹣>bD.|a|>|b|
,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、:.
(﹣2,1),将△ABC沿一确定方向平移得到△ABC,点B的对应点B的坐标是(1,2),
1111
则点A,C的坐标分别是()
11
(4,4),C(3,2)(3,3),C(2,1)
1111
(4,3),C(2,3)(3,4),C(2,2)
1111
,则m+3n的值是()

,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3
个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x元,每个
实心球y元,则根据题意列二元一次方程组得()
.
.
()
>|b|,则a2>>b,则<
>b,则ac2>>b,c>d,则a﹣c>b﹣d
,在10×6的网格中,每个小正方形的边长都是1个单位,将三角形ABC平移到三
角形DEF的位置,下面正确的平移步骤是()
,再向下平移2个单位
,再向下平移2个单位:.
,再向上平移2个单位
,再向上平移2个单位
,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直
线AB、CD、AC上),设∠BAE=α,∠DCE=:①α+β,②α﹣β,③β﹣α,④360°
﹣α﹣β,∠AEC的度数可能是()
A.①②③B.①②④C.①③④D.①②③④
评卷人得分
(共4小题)
,下列条件中:
①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;
则一定能判定AB∥CD的条件有(填写所有正确的序号).
.
+by=32的解,则b=.
,则m的取值范围为.
评卷人得分
(共10小题)
::.
①;②.
:,并把解集在数轴上表示出来.
:
(1)2+++|﹣2|(2)+﹣.
:如图,∠CDG=∠B,AD⊥BC于点D,EF⊥BC于点F,试判断∠1与∠2的关系,
并说明理由.
,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.
(1)画出△A′B′C′;
(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)
(3)△:.
,以小英家为坐标原点建立如图所示的坐标系.
(1)写出汽车站和消防站的坐标;
(2)某星期日早晨,小英同学从家里出发,沿(3,2)→(3,﹣1)→(0,﹣1)→(﹣1,
﹣2)→(﹣3,﹣1)的路线转了一下,又回到家里,写出路上她经过的地方.
,为响应号召,某商场计划用3800元购进甲,乙两种节
能灯共120只,这两种节能灯的进价、售价如下表:
进价(元/只)售价(元/只)
甲型2530
乙型4560
(1)求甲、乙两种节能灯各进多少只?
:.
(2)全部售完120只节能灯后,该商场获利多少元?
“绿色发展低碳出行”号召,
场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单
车共需16000元.
(1)求男式单车和女式单车的单价;
(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费
用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是
多少?
23.“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若
干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
(1)求这次调查的家长人数,并补全图1;
(2)求图2中表示家长“赞成”的圆心角的度数;
(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?
:.
∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,
BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.
:.
参考答案与试题解析
(共10小题)
1.【解答】解:A、对某班50名同学视力情况的调查,比较容易做到,适合采用全面调查,
故本选项正确;
B、对元宵节期间市场上汤圆质量情况的调查,调查面较广,不容易做到,不适合采用全面
调查,故本选项错误;
C、对某类***燃放质量情况的调查,破坏性调查,只能采用抽样调查,故本选项错误;
D、对重庆嘉陵江水质情况的调查,无法进行普查,只能采用抽样调查,故本选项错误.
故选:A.
2.【解答】解:∵a∥b,
∴∠1=∠3=34°,
又∵AB⊥BC,
∴∠2=90°﹣34°=56°,
故选:C.
3.
【解答】解:∵∠1+∠2=180°,
∴CD∥EF,
∴∠3=∠5,
∵∠3=55°,:.
∴∠5=55°,
∴∠4=∠5=55°,
故选:D.
4.【解答】解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,
∴|a|>|b|,a<﹣b,b>a,a<﹣2,
故选:D.
5.【解答】解:由点B(﹣4,1)的对应点B的坐标是(1,2)知,需将△ABC向右移5
1
个单位、上移1个单位,
则点A(﹣1,3)的对应点A的坐标为(4,4)、点C(﹣2,1)的对应点C的坐标为(3,
11
2),
故选:A.
6.【解答】解:根据题意,将代入,得:,
①+②,得:m+3n=8,
故选:D.
7.【解答】解:设每个排球x元,每个实心球y元,
则根据题意列二元一次方程组得:,
故选:B.
8.【解答】解:A、若a>|b|,则a2>b2,正确;
B、若a>b,当a=1,b=﹣2,时则>,错误;
C、若a>b,当c2=0时则ac2=bc2,错误;
D、若a>b,c>d,如果a=1,b=﹣1,c=﹣2,d=﹣4,则a﹣c=b﹣d,错误;
故选:A.
9.【解答】解:根据网格结构,观察对应点A、D,点A向左平移5个单位,再向下平移2:.
个单位即可到达点D的位置,
所以平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.
故选:A.
10.【解答】解:(1)如图,由AB∥CD,可得∠AOC=∠DCE=β,
1
∵∠AOC=∠BAE+∠AEC,
11
∴∠AE1C=β﹣α.
(2)如图,过E作AB平行线,则由AB∥CD,可得∠1=∠BAE=α,∠2=∠DCE=β,
222
∴∠AEC=α+β.
2
(3)如图,由AB∥CD,可得∠BOE=∠DCE=β,
33
∵∠BAE=∠BOE+∠AEC,
333
∴∠AEC=α﹣β.
3
(4)如图,由AB∥CD,可得∠BAE+∠AEC+∠DCE=360°,
444
∴∠AEC=360°﹣α﹣β.
4
∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.
(5)(6)当点E在CD的下方时,同理可得,∠AEC=α﹣β或β﹣α.
故选:D.
(共4小题)
11.【解答】解:①∵∠B+∠BCD=180°,:.
∴AB∥CD;
②∵∠1=∠2,
∴AD∥CB;
③∵∠3=∠4,
∴AB∥CD;
④∵∠B=∠5,
∴AB∥CD,
故答案为:①③④.
12.【解答】解:∵,,
故答案为:2.
13.【解答】解:把x=3,y=2代入方程6x+by=32,得
6×3+2b=32,
移项,得2b=32﹣18,
合并同类项,系数化为1,得b=7.
14.【解答】解:
由不等式①,得x>2m,
由不等式②,得x<m﹣2,
∵关于x的一元一次不等式组无解,
∴2m≥m﹣2,
解得,x≥﹣2,
故答案为:m≥﹣2.
(共10小题)
15.【解答】解:①,:.
①×3+②×2得:
13x=52,
解得:x=4,
则y=3,
故方程组的解为:;
②,
①+12×②得:x=3,
则3+4y=14,
解得:y=,
故方程组的解为:.
16.【解答】解:,
由①得,x>﹣2;
由②得,x≥,
故此不等式组的解集为:x≥.
在数轴上表示为:.
17.【解答】解:(1)2+++|﹣2|
=2+3﹣2+2﹣
=+3;
(2)+﹣:.
=﹣3+4﹣
=1﹣
=﹣.
18.【解答】解:∠1=∠2,
理由:∵∠CDG=∠B,
∴DG∥BA(同位角相等,两直线平行),
∴∠1=∠BAD(两直线平行,内错角相等),
∵AD⊥BC,EF⊥BC(已知),
∴AD∥EF(在同一平面内,垂直于同一直线的两条直线平行),
∴∠2=∠BAD(两直线平行,同位角相等),
∴∠1=∠2(等量代换).
19.【解答】解:(1)如图所示,△A′B′C′即为所求;
(2)如图所示,CD、CE即为所求;
(3)△BCD的面积为×4×4﹣×1×3﹣×1×3﹣1=4,
故答案为:4
20.【解答】解:(1)汽车站(1,1),消防站(2,﹣2);
(2)小英经过的地方:游乐场,公园,姥姥家,宠物店,:.
21.【解答】解:(1)设甲种节能灯有x只,则乙种节能灯有y只,由题意得:
,
解得:,
答:甲种节能灯有80只,则乙种节能灯有40只;
(2)根据题意得:
80×(30﹣25)+40×(60﹣45)=1000(元),
答:全部售完120只节能灯后,该商场获利润1000元.
22.【解答】解:(1)设男式单车x元/辆,女式单车y元/辆,
根据题意,得:,
解得:,
答:男式单车2000元/辆,女式单车1500元/辆;
(2)设购置女式单车m辆,则购置男式单车(m+4)辆,
根据题意,得:,
解得:9≤m≤12,
∵m为整数,
∴m的值可以是9、10、11、12,即该社区有四种购置方案;
设购置总费用为W,
则W=2000(m+4)+1500m=3500m+8000,
∵W随m的增大而增大,
∴当m=9时,W取得最小值,最小值为39500,
答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,
最低费用为39500元.
23.【解答】解:(1)这次调查的家长人数为80÷20%=400人,反对人数是:400﹣40﹣:.
80=280人,
;
(2)360°×=36°;
(3)反对中学生带手机的大约有6500×=4550(名).
24.【解答】解:(1)如图1,∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠A+∠AOB=90°,
∴∠A+∠C=90°,
故答案为:∠A+∠C=90°;
(2)如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,即∠ABD+∠ABG=90°,
又∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,BG∥AM,
∴CN∥BG,
∴∠C=∠CBG,
∴∠ABD=∠C;
(3)如图3,过点B作BG∥DM,:.
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)可得∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,则
∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得
(2α+β)+3α+(3α+β)=180°,①
由AB⊥BC,可得
β+β+2α=90°,②
由①②联立方程组,解得α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.

人教版初一数学下册期末复习试卷A(有答案) 来自淘豆网www.taodocs.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数16
  • 收藏数0 收藏
  • 顶次数0
  • 上传人hh思密达
  • 文件大小1.19 MB
  • 时间2023-03-16