下载此文档

线段和差最值问题-经典模型.docx


文档分类:金融/股票/期货 | 页数:约4页 举报非法文档有奖
1/4
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/4 下载此文档
文档列表 文档介绍
线段和(差)的最值问题
此类问题特点:,一个定点; 2. 线段和最小值,线段差最大值
一、线段和最小值问题
若在一条直线m上,求一点P,使PA+PB最小;
(1)两侧/异侧型:定点A、B在直线m(动点P所在直线)两侧:直接连接A、B两点交直线m于一点P,该点P即为所求点。(PA+PB=AB)

(2)同侧型:定点A、B在动点P所在直线m同侧:(方法:一找二作三连):
一找:找定点A、B,动点P及动点所在的直线m;二作:任选一个定点做对称;三连:连接对称点与另一个定点,其连线交动点所在直线于一点P,该点P即为所求。(PA+PB=PA’+PB=A’B)

二、线段差最大值问题
若在一条直线m上,求一点P,使得PA-PB最大
(1)同侧型:定点A、B在直线m(动点P所在直线)两侧:直接连接A、B两点交直线m于一点P,该点P即为所求点。(PA-PB=AB)
(2)两侧/异侧型:定点A、B在直线m(动点P所在直线)两侧:任选一个定点做对称;三连:连接对称点与另一个定点,其连线交动点所在直线m于一点P,该点P即为所求点。(PA-PB=PA’-PB=A’B)
线段和最小值练****题
,在锐角三角形ABC中,AB=42,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,
则BM+MN的最小值为             .
2. 如图2所示,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,=2,EM+CM的最小值为         .
,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________.

图1 图2 图3 图4
4. 如图4,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为            .
5. 如图5,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm.
,E为AB的中点, +PE的最小值是
7. 如图6,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为            .
,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为                    cm.(结果不取近似值)

图5 图6 图7
9. 如图8,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小值是.
10. 如图9,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为______.

如图8 如图9
解答题
,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛

线段和差最值问题-经典模型 来自淘豆网www.taodocs.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数4
  • 收藏数0 收藏
  • 顶次数0
  • 上传人zxwziyou8
  • 文件大小108 KB
  • 时间2018-12-03