下载此文档

测控技术与仪器课程设计-精密四应变片称重传感器信号调理电路设计.doc


文档分类:通信/电子 | 页数:约37页 举报非法文档有奖
1/37
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/37 下载此文档
文档列表 文档介绍
该【测控技术与仪器课程设计-精密四应变片称重传感器信号调理电路设计 】是由【Seiryu】上传分享,文档一共【37】页,该文档可以免费在线阅读,需要了解更多关于【测控技术与仪器课程设计-精密四应变片称重传感器信号调理电路设计 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。测控技术与仪器课程设计-精密四应变片称重传感器信号调理电路设计
济南大学
课程设计说明书
精密四应变片称重传感器信号调理电路设计题目:
学院(系):自动化学院
年级专业:测控技术与仪器学号:
学生姓名:
指导教师:
目录
第1章摘要…………………………………………………………………………………1第2章引言…………………………………………………………………………………2第3章基本原理……………………………………………………………………………3第4章参数设计及运算……………………………………………………………………5
……………………………………………………………………………5
……………………………………………………………………8
…………………………………………………………………10
…………………………………………………………………12第5章误差分析…………………………………………………………………………14第6章结论………………………………………………………………………………16心得体会……………………………………………………………………………………17参考文献……………………………………………………………………………………18
第1章摘要
在分析重力传感器信号特性的基础上,模块化地设计了称重传感器信号的调
理电路并对其进行了仿真实验。结果表明:电路能实时、准确地处理信号,且工作稳定,可靠,重复性好,抗干扰能力强,可实现精密测量的目的。第2章引言
随着现代数据采集系统的不断发展,对高精度信号调理技术的要求也越来越高。由于传感器输出的信号往往存在温漂、信号比较小及非线性等问题,因此它的信号通常不能被控制元件直接接收,这样一来,信号调理电路就成为数据采集系统中不可缺少的一部分,并且其电路设计的优化程度直接关系到数据采集系统的精度和稳定性。
在称重传感器信号检测中,检测精度受到诸多因素的影响,其中电桥激励电压源的精度和稳定度是影响信号精确度的重要因素之一。电桥输出与激励电压成正比,因此,激励电压出现任何漂移都将导致电桥输出出现相应的漂移。并且现场工作环境恶劣,可能存在粉尘、振动、噪声以及电磁干扰等,称重传感器输出的几百微伏至几十毫伏信号极易受到干扰。所以研究抗干扰能力强、实时性好的信号变送和传输技术对保证检测精度具有重要意义。
第3章电路结构设计

测量电阻有两种简单的方法:一种是在电阻上通过恒定电流,并测量电阻两端的电压,这需要精密电流源和精密电压表。电流的任何变化都将视为电阻的变化。此外,阻性传感器的功耗尽可能的小,以确保自身散热不造成误差。另一种是利用电阻电桥测量微小电阻变化,电桥由连成四边形的四个电阻组成,其中一个对角接激励电压源,而另一个对角接电压检测器,检测器将测量两个分压电阻中点间的电压。这种电桥电路在实际中可以根据输出电压直接观测出电阻差。第一种方法要求驱动电流必须小,但是这又限制了该方法的测量精度。根据设计要求精密四应变片称重传感器应采用流行的电压驱动型电桥,既第二种方法,这样就确保了检测信号的精确度和线性度。

综合了称重传感器信号特性及仿真实验,按第二种方法设计了调理电路,其结构如图1所示。其中称重传感器采用传感器,提高检测精度和使加卸载曲线对称;调理电路采用5V参考电压芯片AD588,使输出为符合设计要求的电压输出,精密齐纳二极管型参考源AD588对温度变化具有极低的激励漂移和增益。调理模块采用精确度高、使用简易、。
0~
~10000uε
电流缓冲
控制信号
稳压模块
图1信号调理模块结构图

全器件变化电桥通常采用分立设计,,必须采用特殊的技术以确保精度.
,因此激励电压出现任何漂移都将导致电桥输出出现相应的漂移.
因此,我们设计的精密四应变片称重传感器的电桥具有六个引脚:两个与电桥输出端相连,两个与电桥激励源相连,,设计出了开尔文(或称4线),将导线电阻引起的误差降至最低,.
VRLEAD+FORCEB
+SENSE
R-δR+δ
VO
R-δR+δ
-SENSERLEAD
-FORCE
图2开尔文传感器系统
该电路中激励电压V并未驱动电桥,而是先与上精密运放的输入端相连,该B
运放在电桥的(+)+FORCE引脚处会受远程电缆电阻的影响而出现明显压降,但是通过运放+(-)B
,-FORCE引脚处的压降将被来自-SENSE引脚的反馈校正.
在这两种情况中,传感器引脚都与运放的高阻抗输入端相连,(+)和(-)始终等于V,
开尔文传感器电桥能有效抑制因导线电阻引起的误差.

稳压模块主要由比较先进的精密齐纳二极管型参考源AD588构成,AD588具有较低的初始误差,对温度变化具有极低的激励漂移和增益,用于精密测量,能够为系统提供5V的稳定的参考电压.

在设计开尔文传感电路时,-FORCE引脚可能要求运放输出为负电压,(约30mA)所以该电路在运放输出端最好增加电流缓冲级.
参考源、,(与标准的350Ω电桥相连).此时也需要运放缓冲.
因此为了使该电路获得最高的精度,,因此采用简单的一个三极管就可以实现缓冲.
在这里我们使用2N2219A型的三极管作为缓冲器,与OP177构成反馈回路,
在许多现代电子设备中,如数据采集系统、医疗仪器、信号处理系统等需要对弱信号进行高精度处理的场合,都较普遍地采用了仪器放大器,常用的仪器放大器有传统的三运放仪器放大器和单片仪器放大器,因单片仪器放大器具有高精度、低噪声及易于控制、设计简单等特点而成为设计者优选的对象。作为著名的模拟电路及数模混合电路的制造商AD公司为设计者提供了许多性能优良的单片仪器放大器芯片,如AD524、AD620、AD624等已广泛应用到各种电路设计之中,这些芯片的电气性能指标各不相同,但设计方法大同小异。在我们设计的信号调理电路中采用了增益范围较大,且精度较高的AD620芯片作为高精度放大模块。
其结构如图3所示:
R3R5-VinVaA1
R1
A3VoutRG
R4R2
R6A2+VinVb
图3AD620结构功能框图
AD620BN特点
,易于使用
通过一个外部电阻设置增益
(增益范围:1至10000)
宽电源电压范围(??18V)
具有比三运放IA设计更高的性能
提供8引脚DIP和SOIC封装
低功耗,,低噪声
输入电压噪声:9nV/?Hz(1kHz)
µV峰峰值噪声(),出色的直流性能(B级)
输入失调电压:50µV(最大值)
输入失调漂移:µV/?C(最大值)
输入偏置电流:(最大值)
共模抑制比:100dB(最小值,G=10),出色的交流特性
带宽:120kHz(G=100)
%建立时间:15µs
AD620BN技术指标如表1.
表1
Single/DualSupplyDualVnoiseRTI1-10HzµVp-µVp-p
VoltageSupply(Vmax)?18VTemperatureRange-55to+125
GainSettingMethodResistorGainError(%)max+%GainRange(mintomax)=10(kHztyp)800kHzPackageDIP,SOICCMRR(dB)93dBVosi(µV)30µVAD620为一个低成本,高精度的单片仪器放大器,为8脚SOIC塑封外形(图4)。
该放大器的特点为,差动输入,单端输RG18GR出。电压增益可由一个电阻R来确定,且增益G
27+VS-IN连续可调,并有效地解决了后级负载对地连接
36Output的问题。Al、A2组成了同相高输入阻抗的+IN
差动输入,差动输出,并承担了全部的增益放45REF-VS
大任务。由于电路结构对称,增益改变时,输
图4AD620芯片引脚图入阻抗不变。
反馈电阻R1=R2=,放大器A1、A2
的共增益、失调、漂移等误差均得到了相互补
偿(后级A3的增益为1,具有较高的共模抑制比和抗干扰能力。
尽管AD620由传统的三运算放大器发展而成,但一些主要性能却优于三运算放大器构成的仪表放大器的设计,如电源范围宽(?,?18V),设计体积小,功耗非常低(),因而适用于低电压、低功耗的应用场合。
AD620的单片结构和激光晶体调整,允许电路元件紧密匹配和跟踪,从而保证电路固有的高性能。AD620为三运放集成的仪表放大器结构,为保护增益控制的高精度,其输入端的三极管提供简单的差分双极输入,并采用B工艺获得更低的输入偏置电流,通过输入级内部运放的反馈,保持输入三极管的集电极电流恒定,并使输入电压加到外部增益控制电阻R上。AD620的两个G
,因而增益方程式为
,(1)G,,1GR
则外部控制电阻值为对于所需的增益,
(2)RKG,,G,1
R为外部增益调正,可在放大器的脚l和脚8之间跨接此高精度电阻来满足G
,增益误差可?,,非线性?,。AD620由于体积小、功耗低、噪声小及供电电源范围广等特点,使AD620特别适宜应用到诸如传感器接口、心电图监测仪、精密电压电流转换等应用场合。从电路技术性能上来分析,AD620实际上是一种低功耗、高精度仪器用、宽带集成运算放大器。
第4章参数的计算
V
基本惠斯通电桥如图5所示:
B
R4R3
Vo
R2R1
图5惠斯通电桥
其输出电压为:
RR12,,OB(3)VV,,,,RRRR1423,,,,
平衡时
RR12如果,那么VO,0,RR43
然而,对于大多数采用电桥的传感器应用来说,
,因此,即使采用V=10V的激励,输出电压也B
只能变化数十毫伏.
很多电桥应用中,通常变化的电阻不止一个,有可能是两个,,也就是说所有的元件都发生变化,其变化如图V
6所示:
BR-ΔR
R+ΔR
Vo
R+ΔR
R-ΔR
图6全器件变化型电桥
其输出电压为:
,,R,VV,OB,,R,,(4)
应变片材料选用康铜,,,取K=2;应变片电阻选用标
,,1K,称值为的电阻;,10000;则由公式
,R,K,R(5)

R,K,,,,,,,R
,,,,,,,
,10000的应变片.,,40,
,由公式(4)得VVB,5
,,R20,,,,OBVVVmV,,,,5100,,,,R1000,,,,,
根据设计要求信号调理电路的输出电压的范围为0,,根据有仪VGVOUTO,用放大器的增益
,,,25OVmV100
得根据公式(2)
,,,,,,,,1251
RG1RG2在我们设计的电路中选用一个固定的电阻和一个变阻器串联作为RGRG12k,RG2100,,选用1%的值为的标准电阻,选用的变阻器。通过调节RG2的大小,可以获得所需的增益。
第5章误差分析

当仪表放大器工作在较高增益时,输入级的增益也提高。由于增益提高,输入级贡献的误差被放大,而输出级误差没变。因此,在高增益条件下,输入级误差起主要作用。
输入误差是由于放大器的输入级单独贡献的误差;输出误差是由于放大器的输出级引起的误差。我们常常将与输入端相关的误差分类和组合在一起,称作折合到输入端(RTI)误差,而将所有与输出端相关的误差则称之为折合到输出端(RTO)误差。

测控技术与仪器课程设计-精密四应变片称重传感器信号调理电路设计 来自淘豆网www.taodocs.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数37
  • 收藏数0 收藏
  • 顶次数0
  • 上传人Seiryu
  • 文件大小157 KB
  • 时间2023-03-27